Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Баламирзоев Назим Лиоди Министерство науки и высшего образования РФ

Должность: Ректор

Дата подписа Федерамъное образовательное учреждение

Уникальный программный ключ:

043f149fe29b39f38c91fa342d88c83cd0d6921f

высшего образования

«Дагестанский государственный технический университет»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

дисциплина	Основы техническо	и механики
, , , , , , , , , , , , , , , , , , , ,	Наименование дисциплины	πο ΟΠΟΠ
для направления	08.03.01- Строитель	СТВО
	код и полное наименование направл	
та такууча Пасуя		omeovino il ombolita il moonita il
		строительство»: теория и
проектирование здани	ий и сооружений	
факультет	Филиал в г.Дербенте	_
	енование факультета, где ведется ди	исциплина
	F 50 100 1000 100 11 0	
кафедра Естественно	онаучных, гуманитарных, общепр	рофессиональных и специальных
дисциплин (ЕГОиСД)		
	нование кафедры, за которой закрепл	лена дисциплина
Форма обучения	очная, очно-заочная, курс	<u>2</u> семестр (ы <u>)3</u>

по направлению и профилю подготовки Промышленное и гражданское строительство»: теория и проектирование зданий и сооружений. Разработчик Ганиев А.С. к.ф.м.н (ФИО уч. степень, уч. звание) «<u>27</u>»<u>09</u> 2022 г. Зав. кафедрой, за которой закреплена программа С.Ф.Исмаилова, к.социол.н. подпись (ФИО уч. степень, уч. звание) «<u>27</u> » <u>09</u> 2022 г. Программа одобрена на заседании выпускающей кафедры ЕГОиСД от 28.09.2022 года, протокол № _1 Зав. выпускающей кафедрой, но данному направлению (специальности, профилю) С.Ф.Исмаилова, к.социол.н. (ФИО уч. степень, уч. звание) подпись «<u>27</u>» <u>09</u> <u>2022</u> г. Программа одобрена на заседании Методического совета филиала г.Дербенте от <u>27.09.2022</u> года, протокол № 1 Председатель Методического совета филиала Аликберов Н.А., к.ф.-м.н., ст.преподаватель подпись (ФИО уч. степень, уч. звание) « 28 » 2022 СОГЛАСОВАНО: Директор филиала / И.М.Мейланов/ подпись Начальник УО /Магомаева Э.В./ подпись Проректор по УР /Н.Л. Баламирзоев/

подпись

Программа составлена в соответствии с требованиями ФГОС ВО по направлению

подготовки (специальности) 08.03.01 Строительство, с учетом рекомендаций и ОПОП ВО

1. Цели и задачи освоения дисциплины.

Целями освоения дисциплины «Основы технической механики» являются:

- -дать необходимые представления о работе конструкций, расчетных схемах, задачах расчета плоских и пространственных элементов конструкций на прочность, жесткость и устойчивость;
- -развитие знаний и представлений в области механического взаимодействия, равновесия и движения материальных тел, на базе которых строится большинство специальных дисциплин инженерно-технического образования;
- формирование, навыков математической культуры, логического мышления и научного кругозора для понимания современной естественнонаучной картины мира, для самостоятельного приобретении новых знаний в области механики, для понимания принципов работы технических устройств, деталей машин и механизмов, исследования их движения и равновесия.

Задачами освоения дисциплины являются:

- повышение образовательного уровня студентов, заключающееся в развитии их знаний и представлений в области механического взаимодействия, равновесия и движения материальных тел, на базе которых строится большинство специальных дисциплин инженерно-технического образования;
- овладение основными алгоритмами построения и исследования механикоматематических моделей для развития у будущих специалистов склонности и способности к творческому мышлению, выработке системного подхода к исследуемым явлениям, умения самостоятельно строить и анализировать математические модели различных механических систем, адекватно описывающих разнообразные механические явления и использовать методы теоретической механики для исследования движения и равновесия этих систем;
- приобретение необходимых компетенций, позволяющих успешно решать разнообразные научно-технические задачи в теоретических и прикладных аспектах, самостоятельно используя современные образовательные и информационные технологии овладевать той новой информацией, с которой будущим специалистам придется столкнуться в производственной и научной деятельности, в том числе связанные с созданием новой техники и технологий

2. Место дисциплины в структуре ОПОП бакалавриата

Дисциплина «Основы технической механики» относится к базовой части учебного плана и обеспечивает логическую связь, между физикой и математикой, применяя математический аппарат к описанию и изучению физических явлений, во-вторых, между естественнонаучными, общетехническими и специальными дисциплинами.

Сюда следует отнести большое число специальных инженерных дисциплин, посвященных изучению движения различных механизмов, управления машинами и транспортными системами, разработке методов расчета и эксплуатации таких объектов, как организация и безопасность движения.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля)

В результате освоения дисциплины «Основы технической механики» студент должен овладеть следующими компетенциями:

Код	Наименование компетенции	Наименование показателя оценивания
компетенции		(показатели достижения заданного
		уровня освоения компетенций)
		OWY 11 P
ОПК-1	Способен решать задачи профессиональной деятельности на основе использования теоретических и практических основ естественных и технических наук, а также математического аппарата	ОПК — 1.1 Выявление и классификация физических и химических процессов, протекающих на объекте профессиональной деятельности
ОПК-3	Способен принимать решения в профессиональной сфере, используя теоретические основы и нормативную базу строительства, строительной индустрии и жилищнокоммунального хозяйства	ОПК-3.1. Описание основных сведений об объектах и процессах профессиональной деятельности посредством использования профессиональной терминологии
ОПК-6	Способен участвовать в проектировании объектов строительства и жилищно-коммунального хозяйства, в подготовке расчетного и технико-экономического обоснований их проектов, участвовать в подготовке проектной документации, в том числе с использованием средств автоматизированного проектирования и вычислительных программных комплексов	ОПК-6.1. Выбор состава и последовательности выполнения работ по проектированию здания (сооружения), инженерных систем жизнеобеспечения в соответствии с техническим заданием на проектирование

4. Объем и содержание дисциплины (модуля)

Форма обучения	очная	Очно-заочная
Общая трудоемкость по дисциплине (ЗЕТ/ в	4/144	4 /144
часах)		
Семестр	3	4
Лекции, час	34	17
Практические занятия, час	17	9
Лабораторные занятия, час	17	9
Самостоятельная работа, час	40	73
Курсовой проект (работа), РГР, семестр	-	-
Зачет (при заочной форме 4 часа отводится	-	-
на контроль)		
Часы на экзамен (при очной, очно-заочной	Экзамен	Экзамен
формах 1 ЗЕТ – 36 часов, при заочной форме	(1 ЗЕТ- 36 ч.)	(1 ЗЕТ- 36 ч.)
9 часов отводится на контроль)		

Содержание дисциплины (модуля)

	_	(Очная форма			Очно-заочная форма			
№ п/п	Раздел дисциплины, тема	ЛК	ПЗ	ЛБ	СРС	лк	ПЗ	ЛБ	СРС
11/11	лекции и вопросы	JIK	113	JID	CFC	JIK	113	JID	Crc
1	2	3	4	5	6	7	8	9	10
	Лекция 1.	2	1		2	1	1	1	4
	Тема: "Введение.								
	Основные понятия.								
	Основные свойства								
	твердого								
	деформируемого тела''								
1	1. Цели и задачи изучения								
	курса.								
	2. Основные гипотезы.								
	3. Реальная конструкция и								
	еѐ расчетная схема.								
	4. Основные принципы.								
	5. Внешние воздействия и								
	их классификация.								

	Лекция 2.	2	1	2	1			4
	Тема: "Геометрические							
	характеристики							
	плоских сечений"							
	1. Статические моменты							
	сечения.							
	2. Осевые, центробежный,							
	полярный моменты							
	инерции.							
2	3. Зависимости между							
2	моментами инерции							
	относительно							
	параллельных осей.							
	4. Изменение моментов							
	инерции при повороте							
	координатных осей.							
	5. Главные моменты							
	инерции и главные оси							
	инерции.							
	6. Радиус и эллипс инерции.							
	Лекция 3.	2	1	2	1	1	1	4
	Тема: "Внутренние силы и							
	метод их определения.							
	Напряжения"							
	1. Метод сечений для							
	определения внутренних							
	сил.							
	2. Внутренние силовые							
	факторы: продольные и поперечные силы,							
	поперечные силы, изгибающий и							
3	крутящий моменты.							
	3. Напряжения: полные,							
	нормальные и							
	касательные.							
	4. Выражение внутренних							
	сил через напряжения.							
	5. Дифференциальные							
	зависимости между							
	внутренними силами и							
	нагрузкой.							
	6. Эпюры внутренних сил.							

	Лекция 4.	2	1		2	1			4
	Тема: "Центральное	_	1		_	_			
	растяжение и сжатие								
	прямого стержня"								
	1. Продольная сила и ее								
	эпюра.								
	2. Напряжения и								
	деформации.								
	3. Напряжения в наклонных								
	сечениях.								
4.	4. Три основных вида задач								
	при расчете на								
	прочность.								
	5. Методы расчета на								
	прочность при								
	растяжении и сжатии по								
	допускаемым								
	напряжениям, по								
	разрушающим								
	нагрузкам и по								
	предельным								
	состояниям.								
	Лекция 5.	2	1		2	1	1	1	4
	Тема: "Двухосное								
	напряженное								
	состояние"								
	1. Растяжение- сжатие по								
5.	двум направлениям.								
	2. Расчет тонкостенных								
	резервуаров.								
	3. Безмоментная теория								
	расчета оболочек								
	вращения.								
	Лекция 6.	2	1	2	2	1			4
	Тема: "Кручение прямого	_	_	_	_	-			·
	стержня круглого								
	сечения"								
	1. Эпюры крутящих								
	моментов.								
	2. Углы сдвига и								
	закручивания.								
6.	3. Полярный момент и								
0.	момент сопротивления.								
	жесткость и								
	податливость.								
	4. Потенциальная энергия								
	деформации при								
	кручении.								
	5. Расчеты на прочность и								
	жесткость вала.								

	Лекция 7.	2	1	2	2	1	1	1	4
	Тема: "Изгиб прямых	2	1			1	1	1	7
	стержней"								
	1. Классификация видов								
	1. Классификация видов изгиба.								
	2. Виды балок и типы опор.								
	3. Внутренние силовые								
	факторы.								
7.	4. Дифференциальные								
	зависимости между								
	внутренними силовыми								
	факторами и внешней								
	распределенной								
	нагрузкой.								
	5. Эпюры поперечных сил и								
	изгибающих моментов и								
	особенности их								
	построения.								
	Лекция 8.	2	1	2	2	1			4
	Тема: "Напряжения при								
	изгибе''								
	1. Нормальные и								
	касательные								
	напряжения.								
8.	2. Главные напряжения.								
	3. Три вида задач при								
	изгибе.								
	4. Понятие о рациональных								
	конструкциях и об								
	оптимальном								
	проектировании.								
	Лекция 9.	2	1		2	1	1	1	4
	Тема: "Определение								
	перемещений при								
	изгибе"								
	1. Дифференциальное								
	уравнение изогнутой								
	оси балки.								
9.	2. Точное и приближенное								
	дифференциальное								
	уравнение.								
	3. Интегрирование								
	приближенного								
	дифференциального								
	уравнения.								
	4. Граничные условия.								
	т. т рапичные условия.								

	Π 10	2	1		2	1			4
	Лекция 10.	2	1	2	2	1			4
	Тема: "Универсальное								
	уравнение упругой								
	линии для								
	определения								
	перемещений при								
	изгибе"								
	1. Особенности								
10.	определения								
10.	,								
	•								
	наличии нескольких								
	участков.								
	2. Математические основы								
	метода.								
	3. Начальные параметры.								
	4. Универсальное								
	уравнение.								
	Лекция 11.	2	1		4	1	1	1	4
	Тема: "Статически								
	неопределимые балки''								
11.	1. Основная система метода								
	сил.								
	2. Степень статической								
	неопределимости.								
	3. Уравнения совместности								
	деформации.								
	4. Построение								
	окончательных эпюр								
	внутренних усилий.					_			
	Лекция 12.	2	1		2	1			4
	Тема: "Сложное								
	сопротивление. Косой								
	изгиб''								
12.	1. Исходные предпосылки.								
12.	2. Определение напряжений								
	при косом изгибе.								
	3. Силовая и нулевая линии.								
	4. Перемещения при косом								
	изгибе.								
	Лекция 13.	2	1	2	2	1	1	1	5
	Тема: "Внецентренное	2	1	2	2	1	1	1	3
	действие продольной								
	деиствие продольной силы"								
13.	1. Нормальные напряжения.								
	2. Уравнение нулевой								
	линии.								
	3. Ядро сечения.								
	4. Определение несущей								
	способности.								

	Лекция 14.	2	1		2				5
	Тема: "Устойчивость	_	1		2				3
	сжатых стержней"								
	1. Понятие об устойчивых и								
	неустойчивых формах								
	равновесия.								
	2. Критерии и методы								
14.	исследования								
17.	устойчивости.								
	3. Формула Эйлера для								
	критической силы.								
	4. Гибкость стержней и								
	приведенная длина. 5. Пределы применимости								
	формулы Эйлера. Лекция 15.	2	1	2	4	1	1	1	5
	лекция 15. Тема: "Практический	2	1	2	4	1	1	1	3
	метод расчета сжатых								
	стержней на								
	устойчивость"								
15.	1. Условие устойчивости.								
13.	2. Коэффициент								
	 коэффициент продольного изгиба. 								
	3. Подбор сечений								
	1								
	элементов из условия устойчивости.								
	Лекция 16.	2	1	2	2	1			5
	Тема: "Расчеты при	2	1	2	2	1			3
	некоторых								
	динамических								
	нагрузках"								
	1. Типы динамических								
	нагрузок.								
16.	2. Принцип Даламбера.								
	3. Понятие о динамическом								
	коэффициенте.								
	4. Расчет троса при подъеме								
	груза.								
	5. Ударное действие								
	-								
	нагрузки.								

	Лекция 17.	2	1	3	4	1	1	1	5
	Тема: "Расчеты при								
	некоторых								
	динамических								
	нагрузках"								
	1. Свободные колебания								
17.	системы с одной								
1,,	степенью свободы								
	2. Свободные колебания								
	системы со многими								
	степенями свободы								
	3. Вынужденные								
	колебания								
	4. Явление резонанса.								
	Форма текущего				абота	Входная конт.работа			
	контроля успеваемости				5 тема			ция 1-5	
	(по срокам текущих	2 a	аттест	ация	6-10			ция 6-10	
	аттестаций в семестре)	те				3 аттестация 11-15			-15
			ттеста	ация 1	1-15		Τ	ема	
		тем							
	1 1		Экзамен (13ЕТ- 36 ч.)			Экзамен (13ЕТ- 36 ч.)			
	аттестации (по семестрам)								
	Итого	34	17	17	40	17	9	9	73

Содержание практических и лабораторных занятий 1. Содержание практических занятий

Таблица 4.2.

	7				Таолица 4.2.
№ π/π	№ лекции из рабочей	Наименование практического занятия	Коли	чество часов	Рекомендуемая литература и методические разработки
	програм мы		онно	Очно-заочно	
1	2	3	4	5	6
1	1,2	Тема: "Введение. Основные понятия. Основные свойства твердого деформируемого тела" 1. Цели и задачи изучения курса. 2. Основные гипотезы. 3. Реальная конструкция и еè расчетная схема. 4. Основные принципы. 5. Внешние воздействия и их классификация. Тема: "Геометрические характеристики плоских сечений" 1. Статические моменты сечения. 2. Осевые, центробежный, полярный моменты инерции. 3. Зависимости между моментами инерции относительно параллельных осей. 4. Изменение моментов инерции	2	1	[1-14]
		при повороте координатных осей. 5. Главные моменты инерции и главные оси инерции. 6. Радиус и эллипс инерции.			
2	3, 4	 Тема: "Внутренние силы и метод их определения. Напряжения" 1. Метод сечений для определения внутренних сил. 2. Внутренние силовые факторы: продольные и поперечные силы, изгибающий и крутящий моменты. 3. Напряжения: полные, нормальные и касательные. 4. Выражение внутренних сил через напряжения. 5. Дифференциальные зависимости между внутренними силами и нагрузкой. 6. Эпюры внутренних сил. 	2	1	[1-14]

		Тема: "Центральное			
		растяжение и сжатие			
		прямого стержня"			
		1. Продольная сила и ее эпюра.			
		2. Напряжения и деформации.			
		3. Напряжения в наклонных			
		сечениях.			
		4. Три основных вида задач при			
		расчете на прочность.			
		5. Методы расчета на прочность			
		при растяжении и сжатии по			
		допускаемым напряжениям, по			
		разрушающим нагрузкам и по			
		предельным состояниям.			
3	5, 6	Тема: "Двухосное напряженное	2	1	[1 -14]
		состояние"			
		1. Растяжение- сжатие по двум			
		направлениям.			
		2. Расчет тонкостенных			
		резервуаров.			
		3. Безмоментная теория расчета			
		оболочек вращения.			
		Тема: "Кручение прямого			
		стержня круглого сечения"			
		1. Эпюры крутящих моментов.			
		2. Углы сдвига и закручивания.			
		3. Полярный момент и момент			
		сопротивления. Жесткость и			
		податливость.			
		4. Потенциальная энергия			
		деформации при кручении.			
		5. Расчеты на прочность и			
		жесткость вала.			
4.	7, 8	Тема: "Изгиб прямых	2	1	[1 -14]
		стержней''			
		1. Классификация видов изгиба.			
		2. Виды балок и типы опор.			
		3. Внутренние силовые факторы.			
		4. Дифференциальные			
		зависимости между внутренними			
		силовыми факторами и внешней			
		распределенной нагрузкой.			
		5. Эпюры поперечных сил и			
		изгибающих моментов и			
		особенности их построения.			
		Тема: "Напряжения при			
		изгибе"			
		1. Нормальные и касательные			
		напряжения.			
		2. Главные напряжения.			
		3. Три вида задач при изгибе.			
		4. Понятие о рациональных			
		конструкциях и об оптимальном			

		проектировании.			
5	9, 10	Тема: "Определение	2	1	[1 -14]
	,	перемещений при изгибе"			
		1. Дифференциальное уравнение			
		изогнутой оси балки.			
		2. Точное и приближенное			
		дифференциальное уравнение.			
		3. Интегрирование			
		приближенного			
		дифференциального уравнения.			
		4. Граничные условия.			
		Тема: "Универсальное			
		уравнение упругой линии			
		для определения			
		перемещений при изгибе''			
		1. Особенности определения			
		перемещений при наличии			
		нескольких участков.			
		2. Математические основы			
		метода.			
		3. Начальные параметры.			
		4. Универсальное уравнение.			
6	11, 12	Тема: "Статически	2	1	[1 -14]
		неопределимые балки"			
		1. Основная система метода сил.			
		2. Степень статической			
		неопределимости.			
		3. Уравнения совместности			
		деформации.			
		4. Построение окончательных			
		эпюр внутренних усилий.			
		Тема: "Сложное			
		сопротивление. Косой			
		изгиб"			
		1. Исходные предпосылки.			
		2. Определение напряжений при			
		косом изгибе.			
		3. Силовая и нулевая линии.			
		4. Перемещения при косом			
		изгибе.			
			1		

7	12 14	/F UD "	^	1	F1 1.47
7	13, 14	Тема: "Внецентренное действие	2	1	[1 -14]
		продольной силы"			
		1. Нормальные напряжения.			
		2. Уравнение нулевой линии.			
		3. Ядро сечения.			
		4. Определение несущей			
		способности.			
		Тема: «Расчеты на прочность и			
		жесткость при кручении»			
		Кручение бруса прямоугольного			
		сечения. Кручение тонкостенного			
		бруса открытого профиля.			
		Расчеты на прочность и жесткость			
		при кручении. Расчет			
		цилиндрических винтовых			
		пружин малого шага.			
8.	15, 16	Тема: «Плоский прямой	2	1	[1 -14]
		поперечный изгиб»			
		Основные понятия и определения.			
		Эпюры поперечных сил и			
		изгибающих моментов.			
		Дифференциальные зависимости			
		Журавского. Плоский прямой			
		изгиб.			
		Тема: «Напряжения при			
		изгибе»			
		Нормальные напряжения при			
		чистом прямом изгибе			
		Касательные напряжения при			
		плоском прямом изгибе. Расчеты			
		на прочность при поперечном			
		изгибе.			
9.	17	Тема: «Определение	1	1	[1 -14]
	-	перемещений при изгибе»			
		Потенциальная энергия			
		деформации при изгибе. Анализ			
		напряженного состояния при			
		поперечном изгибе. Перемещения			
		при изгибе. Дифференциальное			
		уравнение упругой линии балки.			
		Расчет на жесткость при изгибе.			
		2 at 101 ha moothoots upn not noo.			
		Итого по курсу	17	9	
		I III OI O IIO KJPCJ	1/	,	

Тематика для самостоятельной работы студента

№ п/п	Тематика по содержанию дисциплины, выделенная для самостоятельного изучения	Количество часов из содержания дисциплины очно Очно-		Рекомендуем ая литература и источники информации	Формы контроля СРС
1	2	3	заочная 4	5	6
1.	Лекция 1.	2	4		
1.	Тема: «Введение. Основные определения и понятия сопромата» Основные определения. Реальный объект и расчетная схема. Схематизация свойств материала. Схематизация геометрии реального объекта. Схематизация опорных устройств. Схематизация системы внешних сил.	2	4	[1 -14]	контрольная работа, лабораторные занятия,
2.	Лекция 2.	2		[1 -14]	контрольная
	Тема: «Основные гипотезы и принципы сопромата» Принципы сопротивления материалов. Принцип Сен-Венана. Принцип независимости действия сил. Принцип начальных размеров.		4	[работа, лабораторные занятия,
3.	Лекция 3.	2	4	[1 -14]	контрольная
	Тема: «Внутренние силы. Метод сечений» Метод сечений для определения внутренних сил. Внутренние силовые факторы: продольные и поперечные силы, изгибающий и кругящий моменты.		7		работа, лабораторные занятия,
4	Лекция 4.	2	4	[15-26]	контрольная
	Тема: «Напряжения» Основные определения. Связь компонентов внутренних сил с напряжениями. Определение напряжений на наклонных площадках. Определение главных напряжений и главных площадок.				работа, лабораторные занятия,
5.	Лекция 5. Тема: «Деформации» Деформации. Деформированное состояние в точке тела. Обобщенный закон Гука для	2	4	[15-26]	контрольная работа, лабораторные занятия,

	изотропного тела. Удельная потенциальная энергия деформации				
1	2	3	4	5	6
6.	Лекция 6.	2	<u> </u>	[15 -26]	контрольная
	Тема: «Растяжение и сжатие»	_	4	[13 20]	работа,
	Определение внутренних усилий.				лабораторные
	Определение напряжений.				занятия,
	Определение деформаций и				,
	перемещений.				
7.	Лекция 7.	2	4	[15-26]	контрольная
	Тема: «Диаграмма растяжений»		•		работа,
	Определение механических				лабораторные
	свойств материала при				занятия,
	растяжении. Диаграммы условных				
	и истинных напряжений.				
	Механические характеристики				
	материалов. Пластичные и				
	хрупкие материалы.				
	Механические свойства при				
	сжатии.	_			
8.	Лекция 8.	2	4	[15 -26]	контрольная
	Тема: «Расчет на прочность »				работа,
	Коэффициент запаса прочности.				лабораторные
	Выбор допускаемых напряжений.				занятия,
	Основные типы задач при расчете				
	на прочность растянутых (сжатых) стержней.				
9.	Лекция 9.	2		[15-26]	KOHEDOHIHOG
).	лекция 5. Тема: «Потенциальная энергия	2	4	[13-20]	контрольная работа,
	деформации при растяжении»				лабораторные
	Анализ напряженного состояния				занятия,
	при растяжении				запити,
	(сжатии).Потенциальная энергия				
	деформации при растяжении.				
	Концентрация напряжений.				
10	Лекция 10.	2	4	[15 -26]	контрольная
	Тема: «Сдвиг (срез)»				работа,
	Определение внутренних сил,				лабораторные
	напряжений и деформаций при				занятия,
	сдвиге .Анализ напряженного				
	состояния при сдвиге.				
	Потенциальная энергия				
	деформации при чистом сдвиге.				
	Расчет на прочность при сдвиге.				
1 1	Расчет заклепочного соединения.	4	4	[15, 06]	
11	Лекция 11.	4	4	[15 -26]	контрольная
	Тема: «Геометрические				работа,
	характеристики плоских сечений»				лабораторные
	сечении»				занятия,

	0 2				
	Определения. Зависимость между				
	моментами инерции относительно				
	параллельных осей. Моменты				
	инерции простейших фигур.				
12	Лекция 12.	2	4	[15 -26]	контрольная
	Тема: «Геометрические				работа,
	характеристики плоских				лабораторные
	сечений»				занятия,
	Вычисление моментов инерции				
	сложных фигур. Изменение				
	моментов инерции при повороте				
	осей координат . Главные оси и				
	главные моменты инерции.				
	Моменты сопротивления				
	площади.				
1	2	3	4	5	6
13	Лекция 13.	2	5	[15 -26]	контрольная
	Тема: «Кручение»				работа,
	Внутренние силовые факторы при				лабораторные
	кручении. Напряжения и				занятия,
	деформации при кручении бруса				
	круглого поперечного сечения				
	(Кулон, 1784 г.). Напряженное				
	состояние при кручении.				
	Потенциальная энергия				
	деформации при кручении.				
	Направление вектора касательного				
	напряжения в контурных точках				
	сечения.				
14	Лекция 14.	2	5	[15 -26]	контрольная
	Тема: «Расчеты на прочность и				работа,
	жесткость при кручении»				лабораторные
	Кручение тонкостенного бруса				занятия,
	замкнутого профиля. Кручение				
	бруса прямоугольного сечения.				
	Кручение тонкостенного бруса				
	открытого профиля. Расчеты на				
	прочность и жесткость при				
	кручении. Расчет цилиндрических				
	винтовых пружин малого шага.				
	Статически неопределимые задачи				
	при кручении.				
15	Лекция 15.	4	5	[15 -26]	контрольная
	Тема: «Плоский прямой				работа,
	поперечный изгиб»				лабораторные
	Основные понятия и определения.				занятия,
	Эпюры поперечных сил и				
	изгибающих моментов.				
	Дифференциальные зависимости				
	Журавского. Плоский прямой				
16	изгиб.	2	5	[15 26]	TACATA CATA CATA
10	Лекция 16.	2	5	[15 -26]	контрольная
	Тема: «Напряжения при изгибе»				работа,

	Нормальные напряжения при				лабораторные
	чистом прямом изгибе (Навье,				занятия,
	1826 г.). Касательные напряжения				
	при плоском прямом изгибе (Д.И.				
	Журавский, 1850). Расчеты на				
	прочность при поперечном изгибе.				
17	Лекция 17.	4	5	[15 -26]	контрольная
	Тема: «Определение				работа,
	перемещений при изгибе»				лабораторные
	Потенциальная энергия				занятия,
	деформации при изгибе. Анализ				
	напряженного состояния при				
	поперечном изгибе. Перемещения				
	при изгибе. Дифференциальное				
	уравнение упругой линии балки.				
	Расчет на жесткость при изгибе.				
	Итого по курсу	40	73		

5. Образовательные технологии

В качестве основной используется традиционная технология изучения материала, предполагающая живое общение преподавателя и студента. Существенным дополнением служат иллюстративные видеоматериалы (видеолекции, электронные плакаты), которые при помощи демонстрационного оборудования, могут наглядно проиллюстрировать отдельные темы и вопросы разделов.

Отдельные вопросы могут быть проиллюстрированы. Все виды деятельности студента должны быть обеспечены доступом к учебно-методическим материалам (учебникам, учебным пособиям, методическим указаниям к решению задач, методическими указаниями к выполнению расчетно-графических работ). Учебные материалы должны быть доступны в печатном виде, а кроме этого могут быть представлены в электронном варианте (электронный учебник, обучающая программа и.т.д.) и предоставляться на CD и/или размещаться в сети учебного заведения.

Оценка качества освоения программы дисциплины (модуля) «Теоретическая механика» включает текущий контроль успеваемости, промежуточную аттестацию обучающихся и проведение экзамена промежуточного контроля (4 семестр). Конкретные формы и процедуры текущего и промежуточного контроля знаний осуществляется вузом самостоятельно путем реализации модульно-рейтинговой системы и доводятся до сведения обучающихся в конце каждого аттестационного периода обучения.

Курс разделен на три модуля: 1-й модуль – статика, 2-ой модуль - кинематика и 3-й модуль – динамика, каждый из которых, в свою очередь, делится на три части, соответствующих основным разделам дисциплины, усваиваемых студентами в течении 3-х аттестационных периодов учебного семестра.

Изучение каждой части модуля заканчивается выполнением соответствующих расчетно-графической работы, домашнего практикума, контрольной работы.

Для более глубокого изучения теоретического материала в течении семестра предполагается проведение двух коллоквиумов.

В процессе самостоятельной работы студент закрепляет полученные знания и навыки, выполняя под руководством преподавателя индивидуальные домашние задачи (домашний практикум) по каждому модулю. Выполненные работы в указанные сроки передается преподавателю для проверки. Сданная работа проверяется, рецензируется, оценивается по 20-ти бальной шкале и возвращается студенту. Возвращенные и, при необходимости, исправленные работы подлежат защите преподавателю в конце семестра. При защите работы студент должен продемонстрировать как знание теоретических вопросов данного блока, так и навыки решения соответствующих задач.

Выполнение определенного числа заданий для самостоятельной работы, защита расчетно-графической работы, контрольные работы и коллоквиумы является формой промежуточного контроля знаний студента по данному разделу и оценивается усредненным, по всем видам выполненных работ, числом баллов по 20-ти бальной шкале модульно-рейтинговой системы оценки знаний ДГТУ в соответствии с графиком текущих аттестаций(3 раза за семестр).

Для аттестации обучающихся по дисциплине «Теоретическая механика» создаются фонды оценочных средств, включающие типовые задания, контрольные работы и методы контроля, позволяющие оценить знания, умения и уровень приобретенных компетенций. При наличии соответствующей материально-технической и проработанной методической базы, при промежуточном контроле усвоения материала модуля, как один из элементов, может использоваться тестирование. Рекомендуется (помимо оценочных средств, разработанных силами данного учебного заведения) пользоваться — при соответствующей адаптации применительно к используемым в данном учебном заведении рабочим программам — комплекты задач и тестовые задания, разработанные на федеральном уровне и получившие рекомендацию Научно-методического совета по теоретической механике.

При успешном прохождении промежуточного контроля по каждой из частей модуля, предусмотренных в данном семестре (56 баллов и более: сумма баллов по 3-м аттестациям,

за посещение и активность на практических и лекционных занятиях, за дополнительные виды деятельности и общественную работу), студент получает допуск к экзамену.

Студентам должна быть предоставлена возможность оценивания содержания, организации и качества учебного процесса в целом, а также работы отдельных преподавателей.

Новые педагогические технологии и методы обучения

При обучении дисциплине «Основы технической механики» используются в различных сочетаниях, частично или полностью следующие педагогические технологии и методы обучения: системный, деятельностный, компетентностный, инновационный, дифференцированный, модульный, проблемный, междисциплинарный, способствующие формированию у студентов способностей к инновационной инженерной деятельности, во взаимосвязи с принципами фундаментальности, профессиональной направленности и интеграции образования.

Системный подход используется наиболее продуктивно на этапе определения структуры дисциплины, типизации связей с другими дисциплинами, анализа и определения компонентов, оптимизации образовательной среды.

Деятельностный подход используется для определения целей обучения, отбора содержания и выбора форм представления материала, демонстрации учебных задач, выбора средств обучения (научно-исследовательская и проектная деятельность), организации контроля результатов обучения, а также при реализации исследований в педагогической практике.

Компетентностный подход позволяет структурировать способности обучающегося и выделять необходимые элементы (компетенции), характеризующие их как интегральную способность студента решать профессиональные задачи в его будущей инновационной инженерной деятельности.

Инновационный подход к обучению позволяет отобрать методы и средства формирования инновационных способностей в процессе обучения как механике, так и сопутствующим курсам, а также обучения в олимпиадной и научно-исследовательской среде (контекстное обучение, обучение на основе опыта, междисциплинарный подход в обучении на основе анализа реальных задач в инженерной практике, обучение в команде и др.). При контекстном обучении решение поставленных задач достигается путем выстраивания отношений между конкретным знанием и его применением. Обучение на основе опыта подразумевает возможность интеграции собственного опыта с предметом обучения.

Интерактивные формы обучения

Интерактивное методы обучения предполагает прямое взаимодействие обучающегося со своим опытом и умение работать в коллективе при решении проблемной задачи. При использовании интерактивной формы обучения предполагается создание организационно – учебных условий, направленные на активизацию мышления, на формулирование цели конкретной работы и на мотивацию получения конечного результата.

Эффективным методом активизации коллективной творческой деятельности является «мозговой штурм», когда для решаемой задачи могут быть выдвинуты различные гипотезы, которые в последующем обсуждаются в группе с участием преподавателя. Для активизации процесса генерирования идей в ходе «мозгового штурма» в задачах механики рекомендуется использование такого приема, как аналогия с решенной задачей такого же типа.

Наглядное восприятие информации также является эффективным способом восприятия и освоения новых знаний, для чего используется «видеометод» обучения. Видеометод позволяет изложить некоторые задачи механики в динамическом развитии, используя средства анимации.

В соответствии с требованиями ФГОС ВО по направлению подготовки реализация компетентностного подхода должна предусматривать широкое использование в учебном процессе активных и интерактивных форм проведения занятий (компьютерных симуляций, деловых и ролевых игр, разбор конкретных ситуаций, психологические и иные тренинги) в сочетании с внеаудиторной работой с целью формирования и развития профессиональных навыков обучающихся. В рамках учебных курсов должны быть предусмотрены встречи с представителями российских и зарубежных компаний, государственных и общественных организаций, мастер-классы экспертов и специалистов.

Удельный вес занятий, проводимых в интерактивных формах, определяется главной целью программы, особенностью контингента обучающихся и содержанием конкретных дисциплин, и в целом в учебном процессе они должны составлять не менее 14 часов (51*20%=10,2) аудиторных занятий. Занятия лекционного типа не могут составлять более 5 часов (11*40%=4,4), остальные 6 часов практические занятия.

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов

Фонд оценочных средств является обязательным разделом РПД (разрабатывается как приложение к рабочей программе дисциплины).

(подпись, ФИО)

7. Учебно-методическое и информационное обеспечение дисциплины (модуля)

Рекомендуемая литература и источники информации (основная и дополнительная)

№ п/п	Виды занятий	Необходимая учебная, учебно-методическая	Автор(ы)	Издательст	Количество	оличество изданий	
11, 11	занити	учеоно-методическая (основная и дополнительная) литература, программное обеспечение, электронно-библиотечные и Интернет ресурсы		во и год издания	В библиотеке	На кафедре	
1	2	3	4	5	6	7	
1	лк, пз, срс	Сопротивление материалов: учебник	Степин П.А.	СПб.: Лань, 2014	75	2	
2	лк, пз, срс лк, пз,	Сопротивление материалов с основами теории упругости и пластичности: учебник для студентов вузов Сопротивление	Г. С. Варданян, В. И. Андреев, Н. М. Атаров, А. А. Горшков	2-е изд., испр. и доп М. : ИНФРА-М, 2013. – 638 с. М.: Прометей	50	2	
3	срс для студентов вузов	A.H.	2011	30	2		
4	п/з, срс	Сопротивление материалов: [ibooks.ru]	Кочетов В (и др).	СПб.:Петер бург, 2010	10	2	
5	лк, п/з, срс	Механика. Сопротивление материалов: учебник	Жуков В.Г.	СПб.: Лань, 2014	5	-	
6	лек, п/з, срс	Техническая механика	Андреев В.И. и др.	М.: Высшая школа,	-	3	

				2011				
	ДОПОЛНИТЕЛЬНАЯ							
		МУ к выполнению	Муртазал	Мах-ла.				
		лабораторных работ	иев Г.М.	ДГТУ.				
		по технической	и др.	2014				
	пи по	механике для						
7	лк, пз, срс	студентов			10	20		
	Срс	направления						
		подготовки						
		бакалавров 08.03.01						
		«Строительство»						
	лк, пз,	Сопротивление	Беляев Н.	М.,				
8	cpc	материалов	M.	Наука.1976	6	10		
	ope							
		Сопротивление	Дарков	М.: ВШ				
9	лк, пз, срс	материалов	A.B.,	1989	6	4		
			Шпиро		Ü			
			Г.С.					
		Методические	Муртазал	Мах-ла.				
		указания к	иев Г. М.	ДГТУ.2010				
		выполнению РПР	и др.					
10	лк, пз,	«Расчет на прочность			10	50		
	срс, ргр	и жесткость						
		статически						
		определимой балки						
		при изгибе»						
		Тесты по дисциплине	Муртазал	Мах-ла.				
		«Техническая	иев Г.М.,	ДГТУ.2014				
		механика» для	Гаджидиб					
11	пз, срс	студентов	иров		30	20		
	ns, epe	направления	М.Ш.					
		подготовки						
		бакалавров						
		«Строительство»						

8. Материально-техническое обеспечение дисциплины (модуля)

- 1. Мультимедийная лекционная аудитория № 315.
- 2. Компьютерный класс № 308 для проведения практических занятий с использованием технологий активного обучения.
- **3.** Единое окно доступа к образовательным ресурсам: справочная система [портал]. URL: http://window.edu.ru/, сайт в интернете http://vuz.exponenta.ru содержат значительное количество электронных учебных материалов (учебные пособия, наборы задач по различным разделам курса теоретической механики, много полезных компьютерных программ и анимированных иллюстраций) по всем разделам дисциплины «**Основы технической механики»**.

Специальные условия инвалидам и лицам с ограниченными возможностями здоровья (ОВЗ)

Специальные условия обучения и направления работы с инвалидами и лицами с ОВЗ определены на основании:

- Федерального закона от 29.12.2012 №273-ФЗ «Об образовании в Российской Федерации»;
- Федерального закона от 24.11.1995 № 181-ФЗ «О социальной защите инвалидов в Российской Федерации»;
- приказа Минобрнауки России от 05.04.2017 № 301 «Об утверждении Порядка организации и осуществления образовательной деятельности по образовательным программам высшего образования программам бакалавриата, программам специалитета, программам магистратуры»;
- методических рекомендаций по организации образовательного процесса для обучения инвалидов и лиц с ограниченными возможностями здоровья в образовательных организациях высшего образования, в том числе оснащенности образовательного процесса, утвержденных Минобрнауки России 08.04.2014 № АК-44/05вн).

Под специальными условиями для получения образования обучающихся с ОВЗ понимаются условия обучения, воспитания и развития, включающие в себя использование при необходимости адаптированных образовательных программ и методов обучения и воспитания, специальных учебников, учебных пособий и дидактических материалов, специальных технических средств обучения коллективного и индивидуального пользования, предоставление услуг ассистента (помощника), оказывающего необходимую помощь, проведение групповых и индивидуальных коррекционных занятий, обеспечение доступа в здания ДГТУ и другие условия, без которых невозможно или затруднено освоение ОПОП обучающихся с ОВЗ.

Обучение в рамках учебной дисциплины обучающихся с ОВЗ осуществляется ДГТУ с учетом особенностей психофизического развития, индивидуальных возможностей и состояния здоровья таких обучающихся.

Обучение по учебной дисциплине обучающихся с ОВЗ может быть организовано как совместно с другими обучающимися, так и в отдельных группах.

В целях доступности обучения по дисциплине обеспечивается:

- 1) для лиц с ограниченными возможностями здоровья по зрению:
- наличие альтернативной версии официального сайта ДГТУ в сети «Интернет» для слабовидящих;

- весь необходимый для изучения материал, согласно учебному плану (в том числе, для обучающихся по индивидуальным учебным планам) предоставляется в электронном виде на диске.
 - индивидуальное равномерное освещение не менее 300 люкс;
 - присутствие ассистента, оказывающего обучающемуся необходимую помощь;
- обеспечение возможности выпуска альтернативных форматов печатных материалов (крупный шрифт или аудиофайлы);
- обеспечение доступа обучающегося, являющегося слепым и использующего собакупроводника, к зданию ДГТУ.
 - 2) для лиц с ОВЗ по слуху:
- наличие микрофонов и звукоусиливающей аппаратуры коллективного пользования (аудиоколонки);
- 3) для лиц с OB3, имеющих нарушения опорно-двигательного аппарата, материальнотехнические условия должны обеспечивать возможность беспрепятственного доступа обучающихся в учебные помещения, столовые, туалетные и другие помещения организации, а также пребывания в указанных помещениях (наличие пандусов, поручней, расширенных дверных проемов и других приспособлений).

Перед началом обучения могут проводиться консультативные занятия, позволяющие студентам с OB3 адаптироваться к учебному процессу.

В процессе ведения учебной дисциплины научно-педагогическим работникам рекомендуется использование социально-активных и рефлексивных методов обучения, технологий социокультурной реабилитации с целью оказания помощи обучающимся с ОВЗ в установлении полноценных межличностных отношений с другими обучающимися, создании комфортного психологического климата в учебной группе.

Особенности проведения текущей и промежуточной аттестации по дисциплине для обучающихся с ОВЗ устанавливаются с учетом индивидуальных психофизических особенностей (устно, письменно на бумаге, письменно на компьютере, в форме тестированияи др.). При необходимости предоставляется дополнительное время для подготовки ответа на зачете или экзамене.

9. Лист изменений и дополнений к рабочей программе

В рабочую программу вносятся следующие изменения: 3.; или делается отметка о нецелесообразности внесения каких-либо изменений или дополнений на данный учебный год. Рабочая программа пересмотрена и одобрена на заседании кафедры <u>ЕГОиСД</u> от _____ года, протокол № _ Заведующий кафедрой ЕГОиСД Исмаилова С.Ф. (название кафедры) (ФИО, уч. степень, уч. звание) (подпись, дата) Согласовано:

Дополнения и изменения в рабочей программе на 20___/20____учебный год.

Мейланов И.М. Директор филиала _____ (ФИО, уч. степень, уч. звание) Председатель МСфилиала Аликберов Н.А., к.т.н.

(подпись, дата) (ФИО, уч. степень, уч. звание)